Forging a New Trident:

Integrating Special Operations Forces into the Navy/Marine Corps Amphibious Team

By Major Jonathan Quinn Kenney, USMC

As the United States (US) emerges from more than a decade of conflict with the hopes of basking in the profits of a peace dividend earned through hard-fought sacrifices, the challenges posed by tomorrow's global security environment betray that optimism. These challenges exist amongst the backdrop of an international community reluctant to host US forces on their soil. The result is a "world in which the international architecture of the 20th century is buckling under the weight of new threats" and despite the insulation our geographic isolation offers, the United States could not only lose worldwide prestige, but our security could be endangered by this widespread instability.

The Chairman of the Joint Chiefs of Staff's (CJCS) Capstone Concept for Joint Operations: Joint Force 2020 (CCJO), responded to these challenges by calling upon all services to "globally integrate" operations. Consequently, the United States Marine Corps’ (USMC) and the United States Special Operations Command's (USSOCOM) attempt to achieve greater synergy by integrating their forces led to the creation of a Special Operations Forces Liaison Elements (SOFLE) aboard Marine Expeditionary Units (MEU)/Amphibious Readiness Groups (ARG). However, this mechanism will neither optimize the capabilities of each force, achieve the necessary cohesion and responsiveness, nor generate unity of effort essential to meeting our nation's challenges well into the 21st century. Fully integrating the SOF community with the Navy/Marine Corps team into an afloat joint force would provide national decision makers with a cohesive and agile force with global reach that optimizes US capabilities to more efficiently and effectively pursue our national interests while maximizing economic value.
15. **SUBJECT TERMS**
USMC, Amphibious Force, USSOCOM, SOF

16. **SECURITY CLASSIFICATION OF:**
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. **LIMITATION OF ABSTRACT**
UU

18. **NUMBER OF PAGES**
30

19a. **NAME OF RESPONSIBLE PERSON**
Marine Corps University / School of Advanced Warfighting

19b. **TELEPHONE NUMBER (Include area code)**
(703) 432-5318 (Admin Office)
INSTRUCTIONS FOR COMPLETING SF 298

1. **REPORT DATE.** Full publication date, including day, month, if available. Must cite at least the year and be Year 2000 compliant, e.g., 30-06-1998; xx-08-1998; xx-xx-1998.

2. **REPORT TYPE.** State the type of report, such as final, technical, interim, memorandum, master's thesis, progress, quarterly, research, special, group study, etc.

3. **DATES COVERED.** Indicate the time during which the work was performed and the report was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov 1998; Nov 1998.

4. **TITLE.** Enter title and sub-title with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses.

5a. **CONTRACT NUMBER.** Enter all contract numbers as they appear in the report, e.g. F33615-86-C-5169.

5b. **GRANT NUMBER.** Enter all grant numbers as they appear in the report, e.g. 1F665702D1257.

5c. **PROGRAM ELEMENT NUMBER.** Enter all program element numbers as they appear in the report, e.g. AFOSR-82-1234.

5d. **PROJECT NUMBER.** Enter all project numbers as they appear in the report, e.g. 1F665702D1257; ILIR.

5e. **TASK NUMBER.** Enter all task numbers as they appear in the report, e.g. 05; RF0330201; T4112.

5f. **WORK UNIT NUMBER.** Enter all work unit numbers as they appear in the report, e.g. 001; AFAPL30480105.

6. **AUTHOR(S).** Enter name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. The form of entry is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard, Jr.

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES).** Self-explanatory.

8. **PERFORMING ORGANIZATION REPORT NUMBER.** Enter all unique alphanumeric report numbers assigned by the performing organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21-PT-2.

9. **SPONSORING/MONITORS AGENCY NAME(S) AND ADDRESS(ES).** Enter the name and address of the organization(s) financially responsible for and monitoring the work.

10. **SPONSOR/MONITOR'S ACRONYM(S).** Enter, if available, e.g. BRL, ARDEC, NADC.

11. **SPONSOR/MONITOR'S REPORT NUMBER(S).** Enter report number as assigned by the sponsoring/monitoring agency, if available, e.g. BRL-TR-829; -215.

12. **DISTRIBUTION/AVAILABILITY STATEMENT.** Use agency-mandated availability statements to indicate the public availability or distribution limitations of the report. If additional limitations/restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information.

13. **SUPPLEMENTARY NOTES.** Enter information not included elsewhere such as; prepared in cooperation with; translation of; report supersedes; old edition number, etc.

14. **ABSTRACT.** A brief (approximately 200 words) factual summary of the most significant information.

15. **SUBJECT TERMS.** Key words or phrases identifying major concepts in the report.

16. **SECURITY CLASSIFICATION.** Enter security classification in accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom of this page.

17. **LIMITATION OF ABSTRACT.** This block must be completed to assign a distribution limitation to the abstract. Enter UU (Unclassified Unlimited) or SAR (Same as Report). An entry in this block is necessary if the abstract is to be limited.
FUTURE WAR PAPER

TITLE:

FORGING A NEW TRIDENT:
INTEGRATING SPECIAL OPERATIONS FORCES INTO
THE NAVY/MARINE CORPS AMPHIBIOUS TEAM

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF OPERATIONAL STUDIES

AUTHOR:

MAJOR JONATHAN QUINN KENNEY, USMC

AY 2013-14

Mentor:

Approved:

Date: 28 May 2014
DISCLAIMER

THE OPINIONS AND CONCLUSIONS EXPRESSED HEREIN ARE THOSE OF THE INDIVIDUAL STUDENT AUTHOR AND DO NOT NECESSARILY REPRESENT THE VIEWS OF EITHER THE SCHOOL OF ADVANCED WARFIGHTING OR ANY OTHER GOVERNMENTAL AGENCY. REFERENCES TO THIS STUDY SHOULD INCLUDE THE FOREGOING STATEMENT
Table of Contents

Introduction ... 1

The Environment & the Threat .. 2

Capabilities of the Forces .. 3

The Capabilities Gap .. 5

Integration: A Force Greater Than the Sum of Its Parts .. 9

Integration: Aviation ... 13

Integration: Afloat Platforms ... 16

Integration: Command Relationships (COMREL) ... 18

Conclusion ... 23
Introduction

As the United States (US) emerges from more than a decade of conflict with the hopes of basking in the profits of a peace dividend earned through hard-fought sacrifices, the challenges posed by tomorrow’s global security environment betray that optimism. The National Security Strategy (NSS) of 2010 describes a global environment where “wars over ideology have given way to wars over religious, ethnic, and tribal identity; nuclear dangers have proliferated; inequality and economic instability have intensified.”¹ These challenges exist amongst the backdrop of an international community reluctant to host US forces on their soil. The result is a “world in which the international architecture of the 20th century is buckling under the weight of new threats” and despite the insulation our geographic isolation offers, the United States could not only lose worldwide prestige, but our security could be endangered by this widespread instability.²

The Chairman of the Joint Chiefs of Staff’s (CJCS) Capstone Concept for Joint Operations: Joint Force 2020 (CCJO), responded to these challenges by calling upon all services to “globally integrate” operations. Consequently, the United States Marine Corps’ (USMC) and the United States Special Operations Command’s (USSOCOM) attempt to achieve greater synergy by integrating their forces led to the creation of a Special Operations Forces Liaison Elements (SOFLE) aboard Marine Expeditionary Units (MEU)/Amphibious Readiness Groups (ARG).³ However, this mechanism will neither optimize the capabilities of each force, achieve the necessary cohesion and responsiveness, nor generate unity of effort essential to meeting our nation’s challenges well into the 21st century. Fully integrating the SOF community with the Navy/Marine Corps team into an afloat joint force would provide national decision makers with
a cohesive and agile force with global reach that optimizes US capabilities to more efficiently and effectively pursue our national interests while maximizing economic value.

The Environment & the Threat

Jim Thomas of the Center for Strategic and Budgetary Assessments states, “the number of national security problems facing the nation is increasing.”\(^4\) This kaleidoscope of worldwide instability provided the backdrop for the former CJCS, Admiral Mike Mullen, to highlight our growing national debt as the nation’s premiere national security threat.\(^5\) With billions of dollars spent on the wars in Afghanistan and Iraq and a national debt that tops $17 trillion, significant future investments in defense capabilities seem remote. This results in a reduced national capacity to pursue American interests in an increasingly volatile environment. While USSOCOM will likely experience reductions in future growth, the Marine Corps could downsize from the current end strength of 182,000 to between 175,000 and 150,000.\(^6\) “Deep budget cuts demand that ‘we trade away size for high-end capability,’” Secretary of Defense Chuck Hagel explained.\(^7\)

In addition to an array of increasing threats and decreasing resources, current trends suggest that the US will encounter significant political roadblocks in projecting combat power onto foreign shores even among friends. In 2003, the Republic of Turkey, an ally and NATO member, denied American use of its soil and airspace during the invasion of Iraq.\(^8\) In addition, after more than a decade of fighting in support of the Iraqi and Afghan people, the newly formed governments within these respective nations effectively rejected hosting US troops on their soil.\(^9\) Some allied nations even prohibit foreign forces from operating on their sovereign territory per restrictions defined in their Constitution, such as the Republic of the Philippines.\(^10\)
Considering these environmental concerns, the joint force faces significant challenges and must adapt in ways not fully considered thus far. Due to budget constraints, US forces will be small compared to current force structure and their demand will not diminish, but they must be capable of “winning” in order to achieve limited and/or lasting outcomes.\(^\text{11}\) Therefore, the US needs a force right sized to accomplish a variety of functions that offers a light footprint to account for political sensitivities associated with US presence, yet operates within our budgetary constraints. Our current force structure possesses the components to potentially achieve these goals but requires some changes in task organization and equipment to realize them.

Capabilities of the Forces

Published in 2012 as the CJCS’s vision for the future, the CCJO stresses the need for a “globally postured Joint Force [able] to quickly combine capabilities with itself and mission partners across domains, echelons, geographic boundaries, and organizational affiliations.”\(^\text{12}\) Although the CCJO calls for forward positioning US forces to ensure a rapid crisis response capability on a global scale, posturing forces abroad may be unrealistic because of the aforementioned political restrictions. In cases where the US is able to deploy forces in foreign lands, too many scenarios exist where land-based forces may not possess the ability to respond to crises in time to be decisive. Nevertheless, when these political sensitivities preclude the US from establishing a long-term, or a heavy footprint ashore, exploiting the sea as maneuver space becomes the most viable solution and the Navy/Marine Corps team dominates in that arena.

The Navy/Marine Corps team’s ability to project self-contained expeditionary combat forces from afloat platforms provides a broad array of options for the National Command Authority (NCA) and the Joint Force Commander (JFC) as they address tomorrow’s challenges.
The Navy fleet offers the JFC persistence and presence in international waters, worldwide striking power with aircraft and missiles, and global mobility from which its platforms can project combat power ashore. Because oceans cover so much of the globe, the Navy capitalizes on using its mobility in this vast maneuver space to position forces at advantageous or even decisive points. The Navy’s Amphibious Task Force (ATF) serves as a major component to the naval fleet because it provides the platforms from which to project power ashore.

As an expeditionary force in readiness, the Marine Air Ground Task Force (MAGTF) offers a combined arms task force with organic fires, aviation, and logistics capable of full spectrum operations. This highly potent and flexible force can rapidly deploy from land or sea and operate in austere environments for limited durations in support of a wide array of contingency responses. Together, the Navy/Marine Corps team afloat, or Amphibious Force (AF), can conduct missions ranging from combined forcible entry operations (CFEO) to natural disaster relief. Consequently, it provides key decision makers with a panoply of options under extremely time sensitive conditions. Comparatively, SOF adds a different dimension to the force.

SOF provides the NCA and JFC with capabilities uniquely suited to address a different set of future challenges. While not inherently strategic in nature, SOF are designed to directly pursue strategic objectives more so than general purpose forces. Directly linked into a robust national and theater level intelligence apparatus, they are our “country’s premier precision raiders, vital in meeting such urgent contingencies as killing or capturing terrorists, rescuing hostages, and securing weapons of mass destruction.”13 In addition, they serve as one of the primary mechanisms for building capacity within partnered nations. More importantly, SOF
possesses the ability to reduce the level of risk—risk to mission, risk to the force, and political risk—to acceptable levels beyond that of conventional forces.

To offer this capability, the SOF community provides a robust set of organic capabilities. These include, but are not limited to, aviation fires, assault support, and logistics from US Army Special Operations Command’s (USASOC) 160th Special Operations Aviation Regiment (SOAR) and numerous aviation wings within the Air Force Special Operations Command (AFSOC). The US Army Rangers also serve as USASOC’s light infantry force capable of independently performing key missions such as airfield seizure, airborne assault, air assault, raids, and movement to contact while also providing support to other SOF when necessary.14

SOF are largely employed using “direct” and/or “indirect” approaches.15 The “direct” approach follows the Prussian strategist, Carl von Clausewitz’s, concept where a military’s sole objective is to destroy the enemy.16 While this approach is often misconstrued as SOF’s predominant role, their strategic and operational long-term successes are more often found using the “indirect” approach. According to B. H. Liddell Hart, the key to achieving victory using the “indirect” approach is to dislocate the enemy physically and psychologically and ultimately paralyze him by attacking via the line of least resistance rather than through direct engagement.17 In SOF terms, this requires cultivating long-term relationships with indigenous peoples over time and tends to be the method that leads to the longest-term strategic gains.

The Capabilities Gap

Although extremely potent, neither of these forces can independently meet our national security needs due to their inherent limitations. These limitations can be expressed in terms of
the ability to access the problem, reliance on other forces, and interoperability between the forces.

Instability tends to occur on land, but the military’s first step in resolving crises centers on accessing the problem in a timely manner. Compared to land-locked areas, littoral-based crises tend to offer significantly more access to the problem because of their proximity to international waters, i.e., US Navy maneuver space. While SOF possesses mobility platforms capable of operating over land or water, SOF does not possess the means to exploit the sea as maneuver space except in very limited cases. Currently, unless a country willingly authorizes US forces to forward deploy on their soil, SOF may encounter challenges in forward staging their assets or rapidly massing their forces to achieve relative superiority over a threat. In the event this occurs while pursuing a strategic objective in the littorals, such as seizing loose fissile materials, an inability to mass sufficient forces could tip the balance necessary for mission success in a time sensitive environment.

In the area of aviation support, SOF airframes must be forward deployed to secure locations. Yet, forward deploying these assets from the continental US (CONUS) via strategic mobility forces involves significant time and resources. This process requires the disassembly of the aircraft, transporting them to a staging point located in a secured area, reassembling, and then conducting test flights to ensure that the aircraft are combat ready. All of these actions must occur before the aircraft is ready for operations. But what if forward deploying these assets to land based safe havens is not politically feasible?

In the past, US Army helicopters have operated from US Navy ships in limited cases. In 1994, conventional Army aircraft embarked aboard the USS Eisenhower (CVN-69) and SOF
helicopters aboard the USS America (CV-66) in preparation for an airmobile assault into Haiti while Marines assaulted across the beaches. In addition, throughout Task Force Sword’s 2001 incursion into Afghanistan during the opening phase of Operation Enduring Freedom (OEF), SOF helicopters operated from the decks of the USS Kitty Hawk (CV-63).20 Even today, the Army Pacific Command (ARPAC) is experimenting with embarking helicopters aboard US warships in order to expand their capabilities within the US Pacific Command (USPACOM) area of responsibility (AOR).21 However, “maintaining niche SOF and temporarily embarking helicopters on a 100,000 ton carrier for short transits to an uncontested area of operations are vastly different capabilities than building and maintaining forward deployed amphibious task forces.”22

The MAGTF faces similar limitations to accessing problems because it lacks certain capabilities desired by our NCA and some JFCs. The decision to deploy US Navy SEALs thousands of miles around the world23 to serve as the decisive force against Somali pirates during the 2009 MV Maersk Alabama hijacking, while Marines aboard the USS Boxer (LHD-4) served as spectators, underscores the capability gap between the MAGTF and SOF.24 In this particular case, the political risks and risks to mission exceeded the tolerance of US national leaders and the JFC, which led to the employment of SEALs rather than the highly capable Marine Corps Scout Snipers already on station. While the time and circumstances that enabled the SEALs’ employment were on the American side in this instance, clearly that is atypical. Had the AF contained an integrated surgical capability desired by the NCA, or had events unfolded differently for the worse, the on-scene commander would have been much better equipped.

Some missions may initially seem appropriate for SOF, but once underway, they rapidly exceed SOF capacity and require a heavier, more versatile, and mobile combined arms force.
GEN Dempsey echoed this notion when he said, “combat operations will not consist solely of minimal violence applied with surgical precision” but could rapidly escalate into scenarios requiring “extensive physical destruction.”

During the Battle of Mogadishu in 1993, the Army Rangers, the 10th Mountain Division, and the Pakistan Army’s conventional mechanized force capabilities provided the firepower that enabled their special operations task force to extricate itself from a highly kinetic, and highly unexpected, confrontation with Somali warlords. Without the ability to forward deploy combined arms forces in support of SOF operations, rapidly bringing them to bear at a critical juncture may not be feasible. Forward deploying combined arms forces on afloat platforms with the ability to rapidly project combat power ashore could be the only option; however, USSOCOM does not possess that capability.

As discussed above, employing SOF aircraft from afloat platforms for short durations offers few problems provided that maintainers aggressively pursue anti-corrosion measures. However, if these aircraft operate in the maritime environment for too long without being marinized, problems multiply. For example, during SOF aviation operations off the coast of Haiti in 1994, “several Army aircraft were so badly corroded by saltwater that they had to be junked.” In addition, interoperability between SOF aircraft and US Navy platforms suffers because SOF assets are simply not engineered to operate aboard ship. Rather, Army aircraft and ground support equipment are engineered to function in high-dirt particle, land-based, expeditionary environments. Consequently, these assets include features to facilitate intra-theater transport but lack design elements to mitigate shipboard hazards, reduce the effect of the maritime environment on readiness, and enhance the efficiency of shipboard operations. They simply are not engineered to withstand the long-term punishment typically associated with operations at sea.
In addition, while the parts block for existing naval aircraft already consumes vast shipboard space, adding varieties of non-compatible airframes could prove troublesome. To fully accommodate maintenance requirements, not only would embarking additional maintainers be required, but also the naval supply chain would have to expand to include SOF-specific parts. Otherwise, the inefficiency of two parallel supply chains must exist, which unfortunately is the more likely approach.

According to USSOCOM’s “SOF Truths,” “most special operations require non-SOF support” because they are not designed or equipped to operate independently for long durations. While the last decade forced improvements in these relationships, integration between the service communities remains suboptimal. In his book, *Perilous Options*, Lucien Vandenbroucke cited a lack of inter-service and inter-agency integration as one of the primary reasons SOF fails. In addition, “insufficient sharing of information and inadequate habitual relationships serve as primary contributing factors for these failures. In other words, SOF’s ability to achieve mission success directly correlates to the synergy generated by teamwork between the services, governmental agencies, and SOF.”

Integration: A Force Greater Than the Sum of Its Parts

Tomorrow’s threats and today’s finances demand that the US projects forces capable of simultaneously operating along the full spectrum of operations. This includes aggressively pursuing strategic goals to responding to any number of crises. When seconds matter the AF/SOF team could address these emergent problems in a fraction of the time it would take to deploy other crisis response forces. Compared to the SOFLE relationship, the fully integrated AF/SOF team offers a holistic, cost effective force with an unmatched level of synergy.
A cohesive AF/SOF team provides the JFC with a forward deployed, highly mobile force capable of rapidly projecting power on the sea or ashore at substantial ranges over extended periods of time. Because of its ability to maneuver and remain on station, the AF can either complement forces already ashore or serve as the tip of the spear. When projecting power ashore, the AF could penetrate deep into the littorals without creating a lodgment yet still project a wide array of sustainment ashore. During disaggregated operations, the AF could simultaneously conduct a litany of other missions, if necessary. Similar to Task Force 58 in the early days of OEF, an AF/SOF team enables the JFC to aggregate multiple AFs in pursuit of a larger campaign such as CFEO without the friction, unity of command, and inter-service rivalries that can emerge when disparate forces that haven’t trained together are rapidly assembled and expected to immediately operate in unison.

Backed by SOF’s robust intelligence network and collection capabilities, the MAGTF’s combined arms light infantry capability and aviation support, the AF could conduct precision strike, visit/board/search/seizure (VBSS), or counter proliferation operations. When employed as a precision strike force, the AF’s combat power projected ashore could rapidly close with, mass against threat forces, and literally put a boot on the enemy’s throat rather than relying on standoff munitions. This ability maximizes the psychological effect on the enemy because he’d never know from where or when the US might attack.

Due to the wider array of missions the AF could address, the US would get greater value and utility from each organization without incurring additional costs or altering the existing force structure under this partnership. In addition, the varied capabilities would allow the NCA and JFCs to assess risk and feel confident because their forward deployed forces contained all of the capabilities and characteristics to address almost any possible mission on air, land, or sea from
the strategic down to the tactical level. Yet, integrating SOF with amphibious forces is not a panacea for all of the nation’s problems and it doesn’t come without challenges.

How is extra value gained from SOF when persistence ashore is a hallmark of certain special operations? According to Linda Robinson of the Council on Foreign Relations, “In the absence of another major war, it is likely that special operations will increasingly focus on enabling or empowering other countries’ forces to address threats within their own borders.” Such missions do not lend themselves to embarking SOF aboard an afloat platform since the mobility requirements of the AF conflict with a SOF team’s long-term presence in a singular location.

However, if SOF are generally distributed throughout a JFC’s AOR, how can they mass at a decisive point to achieve relative superiority when required? In short, massing for mission specific reasons would prove problematic. However, the afloat forces could provide combat power inaccessible to land-based SOF because the latter forces are distributed throughout the AOR. Essentially, the AF/SOF team would serve in general support (GS) of all of land-based SOF in the AOR. This includes providing aviation and logistics in support of SOF-led host nation-training missions. Furthermore, the embarked SOF would serve as a connecting file to SOF ashore should the AF be required to project power ashore. In essence, while the land-based SOF lead with the carrot through persistent presence, the GS AF/SOF team provides not only a rapidly accessible stick, but more appropriately, a rapidly accessible scalpel backed by a jack hammer, when required.

Within the scope of the total US force structure, SOF brings far fewer numbers to the table than all of the other services. Since their operational requirements will remain high for the foreseeable future, would enough forces exist to allocate to multiple AFs on recurring
deployment rotations? Out of all of the services, USSOCOM’s budget will undergo the smallest net reductions despite the impacts of austerity. Of the 66,594 civilian and uniformed personnel within USSOCOM during FY 2013, approximately 33,000 are special operators. Of that number, 12,000 of those operators are deployed at any given time, with about half deployed to Afghanistan. The balance of the operators is dispersed between seventy-odd countries. In fact, USSOCOM has plans to “reach a total of 71,000 personnel during FY 2015.” As the force continues to grow and ongoing operations in Afghanistan come to an end, a greater number of SOF personnel will be available for this type of tasking.

In order to realize the synergy and interoperability gained through integration, modifications to current doctrine, training and education programs would be required; however, major shifts in training may not be necessary. For example, the Mission Essential Task List (METL) for a USMC Infantry Battalion contains many of the same Mission Essential Tasks (MET) performed by a US Army Ranger Battalion. In addition, under current training plans, Marine composite squadrons can support approximately “80%” of SOF missions. Consequently, the AF’s pre-deployment training plan (PTP) would need to incorporate SOF standards but vast shifts from the current Marine Expeditionary Unit (MEU) PTP would not be necessary—the MEU PTP could serve as a base from which to develop a new PTP.

Under this new arrangement, a number of leaders could find themselves employing forces outside of their conventional paradigms. Therefore, not only would joint and service doctrine require change, but the Professional Military Education (PME) system within the services would also require revision. Education on employing Marine Corps, Navy, and SOF should begin at the Career Level Schools (CLS) and continue throughout a leaders’ career. In
addition, leaders of this joint force should be Joint-PME qualified in order to command such an organization, but that is already the norm in today’s joint force.

In accordance with the CCJO, “integrating these flexible, low-signature capabilities across the force has the potential to dramatically increase the effectiveness of other standing capabilities.” Yet in order to effectively integrate the forces, three areas require particular attention: aviation support; providing adequate platforms from which to project the AF/SOF team; and providing non-standard command relationships tailored to confront future challenges.

Integration: Aviation

Although SOF aviation is arguably the most capable rotary wing fleet in the world, “Marine Aircraft Wings (MAW) are organized, trained, and equipped to maximize the operating capacity of the amphibious ships in the inventory” and can fulfill many of SOF’s support requirements, particularly with respect to organic C2/networking and fire support. However, in order for either community to fully support the AF/SOF team’s requirements (e.g., attack, assault, reconnaissance, CAS, etc.), the aircraft from the Marines’ Aviation Combat Element (ACE) and USSOCOM could require modifications: either SOF aircraft require structural modifications to render them maritime and shipboard compatible or select Marine aircraft require weather finding and terrain mapping radar, computerized avionics capable of calculating dynamic flight plans, and fuel probes.

Rather than investing significant resources to create a redundant capability where two different aviation communities simultaneously operate, resources should predominantly be dedicated to upgrading the ACE’s already marinized aircraft so they can operate at the minimum
SOF standard. This would enable USSOCOM’s high-demand, low-density platforms to support operations elsewhere in environments more suitable to the design of the aircraft.

This is not to say that SOF aircraft would no longer support SOF afloat as some SOF missions may require specialized equipment or skills that exceed the capabilities of Marine aviation. In these cases, integrating SOF rotary-wing aircraft (e.g., the MH/AH-6M “Little Bird,” the MH-47G “Chinook,” and the MH-60-M “Black Hawk”) aboard afloat platforms would serve as a short duration alternative. In cases where the requirement existed beyond simply short-term needs, some of the SOF aircraft (particularly the MH/AH-6M) would potentially require conversion to operate in a maritime environment. Either way, a clear distinction as to where Marine aviation ends and external SOF aviation begins would have to be drawn by the JFC and both organizations based on risk, type of mission, political fallout, etc.

Ultimately, the more efficient and cost effective option for the US is to demand more from the AF and increase the standard for Marine and Naval aviators supporting SOF in order to meet USSOCOM requirements. Not only would embarking SOF aviation prove unnecessary and cost prohibitive, the ACE can provide a greater variety of aviation support, particularly tactical air support.

Organic tactical aviation provided by the F-35B would provide a distinct advantage for the AF/SOF team. Whether employed from an afloat platform or via distributed operations using its short take off/vertical-landing (STOVL) capability, the F-35B can penetrate enemy airspace undetected where other aircraft dare not fly. This includes suppressing enemy air defenses (SEAD) via electronic attack (EA) and precision strikes to shape the battlespace for follow on forces. As an air dominance platform, the F-35 could establish local air superiority due to the extensive range in which it detects inbound threats—well before it can be detected. Once the F-
35B established relative superiority against existing threat air power (ground based and in the air), US forces could deliver long-range raids via the MV-22 from at least 400 miles over the horizon—the range significantly increases with KC-130J tanker support.\(^{38}\)

Using its unparalleled sensor suite, the F-35B would identify and map the objective area via its synthetic aperture radar and long-range electro-optical targeting system well before the raid force (RF) reached the objective. As the RF rapidly closed on the objective, the F-35B’s impressive network fusion capabilities would enable the Assault Force Commander (AFC) to receive “God’s eye view” digital photos of the objective area that distinguish threats from friendly or neutral actors on a handheld device while in flight. In addition, the AFC could receive real time high definition full motion video (HD FMV) of the objective area on the same device. The aircraft’s network fusion capabilities also enable the AFC to view the objective area from different vantage points by integrating additional data feeds from adjacent unmanned aerial systems (UAS) such as the Navy’s MQ-8 “Fire Scout,” the stealth Predator-C “Avenger,” or the next generation of USSOCOM sensor assets.\(^{39}\) In turn, all of these data feeds could be simultaneously pushed to other key decision makers at the tactical, operational, or even strategic levels regardless of their location via “publish and subscribe” network links.\(^{40}\)

Once the RF reached the objective, the conventional force from the MAGTF’s ground combat element (GCE) could provide ground based fires outside the range of traditional naval surface fire support (NSFS) via the 120 mm Expeditionary Fire Support System (EFSS). Concurrently, the F-35B could identify inbound targets via its ground moving target detection system (GMTDS) and attack these targets via deep air support (DAS) or precision close air support (CAS) while also serving as a C2 relay for VHF, UHF, chat, or satellite communications to higher headquarters.
In cases where SOF conducts special reconnaissance (SR) missions, the aircraft’s extensive networking capability could facilitate the rapid employment of precision missile strikes via the Long Range Land Attack Projectile (LRLAP) or the Naval Strike Missile (NSM) launched from a Guided Missile Destroyer (DDG). Alternatively, the F-35B could launch the Joint Strike Missile (JSM) at significant standoff range while SOF provides terminal guidance. Since the F-35B is designed to integrate with other weapons platforms like the Navy’s Aegis ballistic missile defense system, the aircraft extends their range, thereby protecting the amphibious ships (when they operate as part of a larger naval strike group) and the forces projected ashore.

Integration: Afloat Platforms

While integrating SOF with an amphibious force provides clear benefits, adding a robust SOF capability to already crowded L-class amphibious platforms will prove a significant challenge. The U.S. Navy’s current shipbuilding plan calls for 32 L-class ships in the inventory for fiscal year (FY) 2014. That number drops to 28 ships in FY 2015 and then gradually increases the fleet to 31 ships by FY 2020. Considering the fiscal constraints that exist for the foreseeable future, even these projections seem optimistic. While building new L-class ships specifically to add capacity for SOF integration remains a distant hope, adding afloat capacity to the amphibious force in an affordable manner is a distinct possibility.

USSOCOM recently invested in retrofitting the formerly decommissioned USS *Ponce* (formerly LPD-15) into an Afloat Forward Staging Base-Interim, (now AFSB(I)-15), primarily for the employment of SOF and mine clearing operations within the US Central Command (CENTCOM) AOR. With the USS Whidbey Island (LSD-41) and the USS Tortuga (LSD-46)
scheduled for decommissioning in March 2015 and the USS Denver (LPD-9) in September 2014, additional conversion options exist. While these amphibious ships could easily integrate into an existing Navy/Marine Corps amphibious team, the lack of a hangar space aboard LSD variants significantly limits their capability and may prove too much of an obstacle to merit USSOCOM’s investment.

Positioning overflow capability aboard commercial conversion AFSB platforms offers a sound alternative due to its size and multi-role capabilities. Under the Maersk Corporation’s AFSB program, the highly affordable and proven Maersk S-Class container ships can be converted into a modular AFSB platform capable of “aviation, roll on/roll off and dry cargo prepositioning, amphibious operations, C2/command, control, communications, computers, and intelligence (C4I), medical, safety/survivability and personnel accommodation.” The modular nature and size of the ship would enable these forces, particularly SOF, to add significant USSOCOM-specific capabilities that require large amounts of cubic space. In addition, the Maersk AFSB costs “60-75 percent less than comparable new build platforms” and requires a much shorter construction time compared to new models. The AFSB provides a logical next step in the evolution of USSOCOM’s use of the AFSB(I) as a platform from which to project amphibious power.

Mobile Loading Platforms (MLP) provides yet another option for positioning SOF aboard an afloat platform. While commissioned in Maritime Sealift Command’s (MSC’s) Maritime Prepositioning Force (MPF) fleet, the newly constructed MLP, USNS Montford Point (T-MLP-1) and/or any of the follow on ships within the same class [e.g., USNS John Glenn (T-MLP-2) and the USNS Lewis B. Puller (T-MLP-3)] could serve a multi-purpose role. In this capacity, the ships could serve an as afloat platform for SOF, similar to the manner in which the
USNS *GySgt Fred W. Stockham* (T-AK-3017) was employed as an afloat platform in 2005 to support Fleet Antiterrorism Security Team (FAST) Company Marines within the USPACOM AOR. There they conducted maritime interdiction operations (MIO) in support of Commander, US Pacific Fleet (COMUSPACFLT) using this platform. Since these ships are already part of the MPF fleet, they could seamlessly integrate into seabases whenever established.

Regardless of the additional platform used by the amphibious force, the platform’s ability to tap into the U.S. Navy’s seabasing system would vastly extend their sustainment while providing the opportunity to modify the force’s table of equipment for non-standard missions or force surges. This capability would enable the force to project power ashore for much longer durations or enable longer duration support of forces already ashore, such as land-based SOF units performing enduring missions.

Integration: Command Relationships (COMREL)

Despite the variety of options that exist to integrate SOF aboard afloat platforms, their presence aboard ship would not achieve the synergy essential to leverage the amphibious force’s full capabilities. While the CCJO calls for “hybrid command arrangements” to maximize flexibility and generate lateral communication, unity of command dominates all ingredients necessary to achieve this synergy. Furthermore, ensuring that SOF retains the ability to pursue strategic objectives unencumbered by COMRELs remains an important characteristic. In order to achieve these goals, the existing COMRELs where USSOCOM exercises Combatant Command (COCOM) authority over TSOCs, and TSOCs exercise operational control (OPCON) over all assigned SOF, must be open to change. Several options for COMRELs include the following:

40

1. Assign SOF OPCON to the MAGTF as its fifth element. Assigning SOF OPCON to the MAGTF provides the MAGTF Commander with substantial control of SOF and retains the traditional relationship between the Commander Amphibious Task Force (CATF) and the Commander Landing Force (CLF). While SOF is not inherently strategic, it retains the potential to directly pursue national objectives. This arrangement maintains some traditional trappings that may not afford the TSOC, JFCs, or national level decision makers enough control of the SOF capability.

2. Assign SOF OPCON to the AF and either the CATF or the CLF employs those forces depending on whichever is the supported or supporting commander—at the same time, the AF remains OPCON to the Naval component commander. Assigning SOF to the AF enables the CATF to directly employ SOF when he is the supported commander without going through the MAGTF. This arrangement retains similar characteristics to the previous relationship in terms of the limitations.
3. All three elements within the AF serve as coequals. In this instance, the CATF, CLF, and the Commander Special Operations Force (CSOF) operate using supported/supporting relationships with shifts determined by mission requirements or the establishing authority. Accordingly, any one of the three commanders “may be supported by another commander with respect to some issues and supporting with respect to others—with the aggregate effect being that the (three) are mutually supporting.” The Naval component commander retains OPCON of the AF and would resolve any irreconcilable differences between commanders.
4. CATF, CLF, and CSOF serve as coequals but the JFC assigns all forces OPCON to a service or functional component commander depending on the nature of the mission. This variation resembles the previous version, but allows assignment of OPCON for the entire AF to shift between service or functional component commanders depending on the mission. For example, the JFC can shift OPCON of the AF from the Naval component commander to the TSOC.
5. Create standing JTFs that retain OPCON of all 3 elements. This last option assigns Navy, Marine, and SOF OPCON to a joint-service qualified commander who reports directly to the theater JFC while the TSOC and the service components retain coordinating authority with the JTF. What sets this option apart from the others is that it unequivocally ensures unity of command by an on-scene commander and offers the best option for the NCA and JFCs to direct the employment of these capabilities. As the AF transits through different AORs, the deployment order (DEPORD) would clearly delineate to whom and when it changes operational control (CHOP) from one JFC to another.53
Conclusion

The increasing worldwide instability and fiscal constraints will force the services to leverage efficiencies, pool resources, and rethink their roles. As evidenced by the development of the SOFLE concept, the senior leadership of the USMC and USSOCOM recognize the necessity of greater force integration; however, the SOFLE does not achieve this goal. It provides an early step in creating a synergistic force capable of countering future threats but needs to go further. Unless these forces are fully integrated under a single commander, the CJCS’s goal of having a forward deployed globally integrated joint force with a limited footprint that optimizes resources may not be achieved.

Despite the many barriers that exist to integrating these forces, an AF/SOF joint force would enable the US to more efficiently and effectively pursue its national interests while maximizing economic value. By joining low density, high demand capabilities onto a cohesive and highly mobile platform, this arrangement ensures that their operational reach is maximized,
thereby expanding its sphere of influence. In addition, this partnership provides better economic value for each of the forces because the missions they can execute tremendously expands.

Although not a silver bullet, an integrated AF/SOF team meets the intent contained within the CCJO. More importantly, it meets the needs of the nation because it gives key decision makers a vast array of options in which to apply the right amount of military might in pursuit of tactical, operational, or even strategic objectives. The alternative is to rely on the current system of disparate, expensive, and duplicative forces that may or may not be equipped to address time sensitive challenges. In a future filled with tumult and uncertainty, the US cannot afford not to do invest in an integrated AF/SOF team.

2 Ibid., 1.
7 Ibid.

19 LTC Michael A. Lewis, USA (Retired), personal interview, October 14, 2013.

Ibid.

RADM B. E. Grooms, USN, Joint Publication 3-02 Amphibious Operations (Joint Chiefs of Staff, August 10, 2009), II-2 to II-6.

Ibid., 6.

LtGen George J. Flynn, USMC, MCWP 3-40.8 Marine Corps Componency (MCCDC: February 13, 2009). 1-9 to 1-22 and 4-10.
Bibliography

Axe, David. "8,000 Miles, 96 Hours, 3 Dead Pirates: Inside a Navy SEAL Rescue." www.wired.com (October 17, 2012).

Naval-Technology.com. "USS Ponce (AFSB(I)-15) - Afloat Forward Staging Base (Interim), United States of America."

