Military forces are more dependent on satellite communications (SATCOM) than ever before. The loss of this capability, even if only temporary, could have significant effects on the employment of the force. A clear understanding of these effects is a starting point for developing mitigation procedures. Consequently, we design an experiment that potentially evaluates the effects of a SATCOM loss during a military operation. By using the six major warfighting functions as evaluative criteria, a proposed survey matrix is developed as a starting point for studying the effect of a SATCOM loss. Considerations are also presented regarding the conduct of the experiment with different types of units under assorted conditions to produce the most useful and accurate results.
FUTURE WAR PAPER

Effects of a SATCOM loss during Military Operations: A Proposed Experimental Design

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF OPERATIONAL STUDIES

AUTHOR: Major Arun Shankar, USMC

AY 2014-15

Mentor: Dr. Bradley Meyer

Approved: [Signature]
Date: 20 April 2015
DISCLAIMER

THE OPINIONS AND CONCLUSIONS EXPRESSED HEREIN ARE THOSE OF THE INDIVIDUAL STUDENT AUTHOR AND DO NOT NECESSARILY REPRESENT THE VIEWS OF EITHER THE SCHOOL OF ADVANCED WARFIGHTING OR ANY OTHER GOVERNMENTAL AGENCY. REFERENCES TO THIS STUDY SHOULD INCLUDE THE FOREGOING STATEMENT
Introduction

Military forces are more dependent on satellite communications (SATCOM) than ever before. A commander’s ability to communicate with voice, video, and data beyond LOS (BLOS) is a tremendous force multiplier. This capability has far reaching effects on all warfighting functions and certainly allows for a unique sense of flexibility and operational reach that would not otherwise be possible. The loss of this capability, even if only temporary, could have significant effects on the employment of the force. A clear understanding of these effects is a starting point for developing mitigation procedures. Consequently, an experimental design that potentially evaluates the effects of a SATCOM loss during a military operation would provide significant utility to commanders. This paper describes an approach where SATCOM capabilities are removed from a unit during a training exercise and the subsequent effect is studied. We propose a method of measuring this effect through the lens of the six major warfighting functions, and consider the challenges of controlling variables and defining metrics to produce the most complete and accurate results.

SATCOM has developed over time from a rare, low-bandwidth capability with reserved access to a more common, capable form of communications. In years prior, SATCOM was only capable of sharing voice communications across long ranges. Its reliability was slightly higher than that of High Frequency (HF) communications, but it did provide a redundant communications path that was enjoyed by commanders. In recent years, satellite communications have been primarily developed for the passing of voice, video, and data services. The growth of the unclassified World Wide Web and various classified networks has driven the requirement for the passage of data at every echelon of command in a deployed environment.
There is no argument against SATCOM having a positive effect on military operations. In effect, it provides a commander with an increased operational reach. Theoretically, a capability increase would not be noticed if every information exchange point within a commander's scope was within line of sight (LOS) range of his unit's location. But that is highly unlikely today. Small wars and distributed operations are a wave of the future. By virtue of its geography, the American military will likely continue to fight most of its wars overseas, and communications links across the globe will be imperative.

SATCOM capabilities significantly enhance features of all warfighting functions. Feedback and reporting functions within command and control loops are highly dependent upon SATCOM. Maneuver within time and space, including the distribution of forces across the battlespace, is hinged upon communications beyond LOS that likely rely on SATCOM. Targeting fires at critical objectives is also reliant upon a data network that uses SATCOM. The development of the enemy picture through intelligence resources is at the mercy of SATCOM networks that extend information sources across the globe. Numerous logistical capabilities are bound to communications networks and global reachback functions that depend on SATCOM. Even force protection uses SATCOM to quickly pass information about threats across the battlespace.

This increase in capability has also resulted in a critical dependence upon SATCOM. The development of data networks in recent years has increased the use of SATCOM in training and wars with little threat of cyber warfare. Future wars with conventional militaries will likely be highly focused on cyber threats, especially those that threaten SATCOM. Indications show that many nations now possess the capability to interrupt and/or destroy SATCOM capabilities.
However, it is arguable that militaries are not prepared for this threat and do not fully understand its consequences.

The remainder of this paper is organized as follows. First, relevant background regarding SATCOM vulnerabilities and past efforts to measure communications requirements is presented. Next, the design of an experiment that studies the effects of a SATCOM loss on a military force is described. Then, execution considerations under this experimental design are developed. Finally, a conclusion is presented and further avenues for research are discussed.

Background

This section describes relevant background about SATCOM vulnerabilities and past efforts to measure communications requirements. Concerns about SATCOM losses are not a new concept, but little has been formally published on the matter. Practitioners throughout the Department of Defense (DoD) are aware of US military’s high dependence on SATCOM for the exchange of critical information. This dependence could not have been more exemplified during the most recent combat operations in Iraq and Afghanistan, where often even short range voice communications used SATCOM for ease of convenience. Some have even categorized the use of SATCOM as “overreliance”\(^1\). Recent use of SATCOM with little focus on redundant capabilities reinforces this assertion.

SATCOM can be lost by a variety actions, not all of which originate with an enemy actor. Terrorists and conventional armed forces certainly maintain the capability to jam satellite signals and even destroy key SATCOM ground transmitters\(^2\). In 2008, the People’s Republic of China demonstrated the ability to physically shoot down a satellite in orbit\(^3\). Adversaries possess the ability to send a nuclear missile into high altitude (25-250 miles above the Earth’s surface) that
can subsequently release an electromagnetic pulse (EMP) and damage the satellite transmitters. Additionally, solar flares, space junk, and a variety of other natural phenomena threaten the reliability of satellite communications during critical times.

When contemplating the effect of the SATCOM loss, it is necessary to consider mitigating procedures that will naturally be executed when the outage occurs. For example, communications will certainly be pushed over LOS links. However, long distance High Frequency (HF) and tropospheric scatter frequencies can be utilized as well. Time sensitive messages may be flown via aircraft. Additionally, Very High Frequency (VHF) retransmission via aerial platforms can extend an LOS link from the conventional 30 miles to greater than 100 miles. Earth-Moon-Earth (EME) communications are also an available alternative, where the Moon can be used as a satellite to bounce low data VHF and UHF signals back down to a receiver on Earth.

Models have been developed to analyze the utilization of communications networks, including SATCOM, to determine the proper mix of capabilities to meet mission requirements. Prior to the year 2000, most available methods for requirements analysis were largely qualitative and derived from doctrine and potential future operational scenarios. Other qualitative models provide a basis for the development of data prioritization under bandwidth constrained scenarios. Later models have utilized network modeling software such as the OPNET modeler and Joint Communications Simulation System (JCSS). This brought a more analytically rigorous process to the analysis, but was still only as good as the data provided. Most modeling and analysis of such nature is to determine future requirements of the newest technology. In many cases, the technology has already been developed; the modeling software simply provides the verification that the technology will satisfy the requirements.
It should be noted that communications requirements often simply seek the maximum capacity available by the present technology. Unlike other equipment requirements, the greatest speed and bandwidth available can almost always be justified by a military requirement. Others claim that the present dependence on SATCOM is unnecessary. A different approach is necessary to truly determine the importance of SATCOM during a military operation. One approach would be to remove the SATCOM capability from a unit during a training exercise and determine the subsequent effects on the mission. Such a scenario will likely force troops to employ their innate behaviors to adapt and overcome. Consequently, a true metric describing the degradation to the mission can be measured.

Experimental Design

The following section describes an experiment designed to measure the effects of a SATCOM outage on a military force. This process begins by first understanding the purpose of the experiment, or the dependent variable that is to be measured. As stated previously, this variable is an “effect” on the military force, but a more specific description of this is required for an experiment. This “effect” can be decomposed into several metrics related to the effectiveness of a military. Depending on the mission, militaries can perform a vast range of functions. An appropriate starting point is the well-known six warfighting functions described within official publications throughout the US military. The six warfighting functions “encompass all military activities performed in the battlespace”\[x\]. They are command and control, maneuver, fires, intelligence, logistics, and force protection. The decomposition of the earlier described “effect” variable can be broken down along these six lines.
The effect of a SATCOM loss on a military force largely depends on the circumstances and employment of the force during the outage. Weather, terrain, mission, and distance all play a significant role in the use of SATCOM. In this paper, these circumstances are defined as controlled variables. Controlled variables should not change during the conduct of the experiment. It is typical to begin with the simplest controlled variables of the most common circumstances. For instance, an experiment may begin assuming a clear day on a flat terrain with a routine fire support mission. Once these results are tabulated, further investigation can be conducted through sensitivity analysis, or the adjustment of these variables.

The remaining variable to be defined in the conduct of the experiment is the independent variable. This variable is altered by the conductor of the experiment to study the impact on the dependent variable. In the case of this experiment, this binary variable is simply defined as whether or not SATCOM is available. The three variables are summarized in Table 1.

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Effect (Six Warfighting Functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Variables</td>
<td>Mission Circumstances</td>
</tr>
<tr>
<td>Independent Variable</td>
<td>SATCOM on/off</td>
</tr>
</tbody>
</table>

Table 1: Experimental Design Variables

With variables identified, the next step is to define the experimental scenario. This is largely accomplished by defining the controlled variables. It is difficult to enumerate an exhaustive list of these variables for the experiment, but those that will likely have significant effects on the results of the experiment, if altered, can be noted. An optimal scenario would be to evaluate the dependent variable by changing the independent variable with absolutely all other factors remaining the same. However, such a scenario might be unrealistic, and the experimenter
should have awareness of the nonnegotiable set of control variables. We specify this list with weather, terrain, time of day, mission, operational tempo, force type, and force laydown.

In the absence of SATCOM, a military force will immediately attempt to use LOS communications to the maximum capability in an effort to mitigate the communications degradation. LOS communications are largely affected by weather and terrain, so stabilizing these circumstances is essential to the experiment. Additionally, the mission, time of day, and operational tempo dictate the using unit’s reliance on SATCOM. This reliance should be consistent while the independent variable is altered. Force type and force laydown also affect the use of communications. For instance, a logistics unit would likely have different communications requirements than an infantry battalion. Similarly, two forces of the same type also need to have the same spatial laydown, as LOS communications are largely affected by distance. An ideal way to control all of the relevant variables is to use the exact same force in the same location with the same mission and operational tempo, altering the dependent variable in two separate time periods with similar weather patterns. We will assume these aspects of the scenario for the remainder of this paper.

Once controlled variables are established, the independent variable is specified in relation to the experimental scenario. As stated earlier, the independent variable is a binary condition as to whether SATCOM is available to the military force or not. For this experiment, SATCOM is defined as a unit’s ability to communicate with a satellite, whether it be through relays or a direct link. Communication is defined as a successful transfer of information across a digital or analog medium. Consequently, when a using unit’s SATCOM capability is turned off, it cannot communicate with satellites, but all other forms of communications remain accessible.
Finally, measurement of the dependent variable is specified. As noted earlier, the effect of the SATCOM loss is the dependent variable, and this effect is decomposed into the six warfighting functions. Therefore, the effect on the six warfighting functions needs to be measured before and after the loss of SATCOM. The difference of the effect between these two levels of the independent variable produces the result of the experiment.

Elements of the six warfighting functions must be examined to measure the change in the dependent variable. These can include features of the targeting process, collections efforts, or logistical movements. In an optimal scenario, systems would exist that collect these measurements automatically, whether it be through user-provided reports or electronic event monitoring. For instance, in measuring the effect of the SATCOM outage on command and control, a system might exist that could observe the timeliness of reporting and responses. The concern with strictly quantitative measurements is that they are reliant upon mature data collection systems that will likely never exist. The dynamic nature of the military does not lend itself to structure in this area.

A strictly qualitative measurement also has its drawbacks. Historically, military organizations focused on lessons learned and staff training have performed similar evaluations in the field or on deployments in an attempt to measure success and determine needed improvements. These evaluations are principally based on free text responses from relatively unscreened participants. The responses are then proofread and summarized into a final product. Concerns about this process include a lack of structure, a shortage of quantitative measurements, and the absence of a determined focus on removing bias from the evaluation.
A common compromise to these challenges is the use of surveys (grading rubrics). Surveys allow the collection of the necessary data in a practical manner without the implementation of expensive data collection systems. The survey can be carefully designed to charge the respondent with the responsibility of considering the unintended influences of varying controlled variables, such as an unexpected shift in mission tempo. Respondents should be carefully selected, much like those of a marketing research focus group, to provide a useful response to decision makers. Survey respondents would evaluate particular criteria across the six primary warfighting functions – command and control, maneuver, fires, intelligence, logistics, and force protection. The use of warfighting functions within the evaluation provides a universal, well-known, comprehensive structure to the survey that respondents can understand. It also allows commanders to draw holistic conclusions about the effectiveness of the force from a complete evaluation of its combat capabilities.

In general, it is preferred that survey responses are quantitatively measurable with as little subjectivity as possible. One method of design is through the use of a Likert scale, or a ratings scale. In this model, respondents are asked to attach a numerical rating, typically 1 thru 4, to characterize the level of preference or agreement with the particular assertion within the survey. For instance, a survey may ask the respondent how to rate the effectiveness of UAV feeds before and after the SATCOM loss. A rating of 1 might equal “not effective” and a rating of 4 could equal “fully effective”. Though there is still subjective judgment involved in determining effectiveness, choosing mature respondents should assist in this matter. Additionally, respondents will set a baseline score before the SATCOM loss is executed. The scores provided after the SATCOM loss will be tabulated in comparison to the baseline score, rather than stand
alone. This relative value will assist in reducing a respondent’s potential bias towards a particular topic.

As stated before, the survey will be focused on the six sections that correlate with the primary warfighting functions. The first section is command and control. Command and control is a combination of the legal authority of the commander and a two-way control feedback system that results in unity. The second section, maneuver, is the movement or action in “any dimension” to gain an advantage. Dimensions can include space, time, technology, or psychology. The third section, fires, is focused on directly affecting a target through lethal or nonlethal means. The fourth section, intelligence, is primarily focused on understanding the enemy. The fifth section, logistics, is directed at the movement and sustainment of the force. The sixth section, force protection, is the protection of military personnel from natural or adversarial threats.

Topics within each warfighting function are evaluated in the survey. The development of these topics should be determined by parties of interest, to include the local commander and/or an evaluation team. Surveys might have slight differences for different types of units, depending on their mission and scope, but should remain consistent among a group that is compared. Infantry units might have several specific topics determined under fires and maneuver, while support units could be more focused on logistics and force protection. An example of a survey is shown in Figure 1.
<table>
<thead>
<tr>
<th>Warfighting Function</th>
<th>Topic</th>
<th>Effectiveness Score (1-4) (Before SATCOM loss)</th>
<th>Effectiveness Score (1-4) (After SATCOM loss)</th>
<th>+/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>Reporting</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Commander's Feedback</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Unity of Command</td>
<td>4</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Planning</td>
<td>4</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Information Management</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Maneuver</td>
<td>Space</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Psychological</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Technological</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Fires</td>
<td>Targeting Process</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Battle Damage Assessment</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Fires Asset Allocation Process</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Intel</td>
<td>Collections</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Topographic Functions</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>Enemy Picture</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Meteorology</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Logistics</td>
<td>Transportation</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>Supply</td>
<td>4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Force Protection</td>
<td>Services (PX, Postal, Legal, Disbo)</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Chemical/Biological Protection</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Entry Control Points</td>
<td>4</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Figure 1: Survey Example

Execution of the Experiment

With all of the variables specified, considerations of the execution of the experiment is provided for the reader. In essence, the foundation of the experiment is simple. A military unit deploys to a simulated combat zone. After a specified period, SATCOM capabilities are disabled (through both relay and direct access). The effect on the force is measured before and after the outage. However, further investigation reveals a more complex interaction of circumstances that need to be addressed before the experiment can be executed.

SATCOM allows for the transfer of information (data, voice, video, etc.) beyond the capabilities of LOS communications. On the earth’s surface, the maximum LOS distance across flat terrain is 30 miles, or the approximate distance at which the Earth’s horizon is met and two
transmission terminals can no longer be pointed directly at one another. The distance is increased when both terminals are suspended in the sky via aircraft, as there is no horizon and transmission distances are solely based on the power output of the transmitter and the sensitivity of the receiver.

Tropospheric scatter and HF transmissions allow the transfer of information beyond LOS, but the reliability and flexibility of these capabilities remain inadequate. Nevertheless, in the event of a SATCOM loss, these are some of the few existing capabilities for communications beyond LOS. More creative solutions like the transfer of printed messages or disk storage via aircraft and the employment of VHS aerial retransmission are also possibilities for mitigation.

As stated before, present designs of communications network redundancy stress the use of LOS, tropospheric scatter, and HF transmission paths in the absence of SATCOM. In fact, these transmission paths are generally designed as the preferred route of information if the destination can be reached without SATCOM. This is because SATCOM links usually have lower bandwidth than LOS links, and SATCOM availability is more limited than alternative transmission paths. Therefore, in the event of a SATCOM loss, information will automatically be routed over redundant paths with limited human intrusion.

Consequently, the loss of SATCOM will immediately reduce, but not necessarily eliminate a unit’s ability to communicate beyond LOS. A good experiment will ensure that the tested unit is reliant upon this capability. Distributing subordinate units throughout a training area beyond 30 miles, or requiring communications with higher headquarters in another region of the world could satisfy this requirement.
It must be ensured that the tested unit is under realistic wartime conditions. Rather than being a staged exercise solely devoted to the test of a SATCOM outage, a unit performing realistic training should be interrupted with the SATCOM outage, and training should then continue under the constrained conditions. Measurements under both conditions will provide the necessary results.

As mentioned earlier, units that vary in mission and capability will have different dependencies on SATCOM. For instance, an intelligence battalion might have a high reliance on SATCOM for imagery and signals. Contrarily, a base security unit might depend highly upon LOS communications within a safety perimeter. An infantry unit with a security mission might have different communications requirements than one with a more offensive mission. An evaluation of multiple units with different missions and capabilities will increase the confidence of the results from this experiment and provide a greater understanding of the effects of a SATCOM loss on the force as a whole.

We conclude this section with a sample scenario. In the Marine Corps, the Marine Air Ground Task Force (MAGTF) is regarded as a military unit with a highly diverse set of capabilities that are scalable and flexible enough to perform a vast array of missions. For this reason, such a unit might be considered a prime candidate for testing the effects of a SATCOM loss. In this hypothetical scenario, a regiment-sized MAGTF deploys to a training area to perform a combat mission. With the infantry as the main effort, the training mission is to seize a nearby urban area and associated key terrain. The command element of the MAGTF must maintain communications with higher headquarters that is located in another country beyond LOS. The MAGTF has an organic complement of logistics and aerial capabilities.
A set of 40 qualified, senior servicemembers and/or civilians serve as observers during the exercise. Ideally, 30 or more observers would provide a statistically sound sample of evaluations from which to draw conclusions. Their duties include the development of the previously described evaluation survey, catered to the interests of relevant stakeholders. Additionally, they provide the graded evaluation and supporting qualitative commentary on the survey before and after the SATCOM outage. The length of the exercise is of sufficient time to make a substantive evaluation. Time is not as critical as the employment of the SATCOM resource. If a unit is employing SATCOM to a full capability and adapting quickly, the exercise may not need to go much longer than two weeks to obtain a sufficient evaluation of the capability gap. In other cases, more time might be needed. In the case of this scenario, SATCOM is available during the first week and eliminated during the second week of the 2-week exercise.

As the outage takes effect during the second week, the unit begins mitigation procedures with organic LOS, tropospheric scatter, and HF transmissions. They additionally use aerial assets to float a VHF retransmission terminal in the sky as an effort to double ground LOS range to 60 miles. Commercially provided cellular phone technology is not allowed as a mitigating resource, since it does not provide a sufficiently secure transmission path. As the week progresses, the unit finds the use of HF and tropospheric scatter capabilities to be adequate for the exchange of critical information to higher headquarters. However, the limited bandwidth prevents the use of streaming media, commercial internet, and large file downloads. For this reason, intelligence operations are affected the most.

Once the evaluation period is complete, the surveys are collected and analyzed. Summary statistics (mean, mode, median, range, outliers, etc.) are calculated for the quantitative scores. Qualitative comments are summarized and meaningful points are highlighted. Conclusions are
provided to relevant decisionmakers. If the conclusions suggest an inability to be effective during the SATCOM outage, perhaps decisionmakers will consider more training in this area or the development of versatile equipment to mitigate these challenges.

Conclusion

The preceding sections provided the background, necessity, and structure of an experiment designed to evaluate the effects of a SATCOM loss on a military force. The structure was pinned to the evaluation of capabilities associated with the six warfighting functions. Fluidity in the specifics of the controlled variables was intended to allow versatility in the types and missions of the units being evaluated. Then, considerations for the execution of the experiment were described, including the development of mitigating actions. Lastly, a hypothetical scenario was presented to solidify the reader’s understanding.

Past emphasis on SATCOM vulnerabilities have been solely focused on the military’s present use of SATCOM and assume very little mitigation in the event of an outage. Recent events have brought clarity to the risk of SATCOM and an enemy force’s ability to disable this capability. However, no research has been provided that accurately assesses the true effects of a SATCOM outage. We develop points in this paper suggesting that different units have varying SATCOM requirements, and some might be more affected than others by an outage. This experimental design will allow stakeholders to better understand the military’s reliance on SATCOM and how it is truly affected by a loss of the capability.

Such an experimental design is not simply limited to SATCOM evaluations. A similar design can be developed to evaluate the loss of other communications capabilities. In some cases, the design can even be used to evaluate the loss of capabilities beyond those of
communications. Perhaps a training unit is deprived of a logistics or maintenance capability. Or maybe a headquarters staff is notionally killed during training. Similar variables and surveys can be quickly developed to obtain the results of these effects using the structure provided in this paper.

Future warfare will almost undoubtedly face obstacles in the area of cyber warfare that have not yet been seen. It is the responsibly of commanders to foresee these concerns and develop realistic training for troops to overcome these obstacles. SATCOM is just one of many critical communications capabilities that are at risk in the future. Experimental designs similar to that developed in this paper will greatly assist military forces in adapting to these challenges.

iii Ibid.
iv Tsirlis
v Keller, J. (2013). Army revisits tropospheric scatter communications technology as alternative to long-range SATCOM. *Military and Aerospace Electronics*.
Bibliography

Keller, J. (2013). Army revisits tropospheric scatter communications technology as alternative to long-range SATCOM. Military and Aerospace Electronics.

